581 research outputs found

    Automation of the space station core module power management and distribution system

    Get PDF
    Under the Advanced Development Program for Space Station, Marshall Space Flight Center has been developing advanced automation applications for the Power Management and Distribution (PMAD) system inside the Space Station modules for the past three years. The Space Station Module Power Management and Distribution System (SSM/PMAD) test bed features three artificial intelligence (AI) systems coupled with conventional automation software functioning in an autonomous or closed-loop fashion. The AI systems in the test bed include a baseline scheduler/dynamic rescheduler (LES), a load shedding management system (LPLMS), and a fault recovery and management expert system (FRAMES). This test bed will be part of the NASA Systems Autonomy Demonstration for 1990 featuring cooperating expert systems in various Space Station subsystem test beds. It is concluded that advanced automation technology involving AI approaches is sufficiently mature to begin applying the technology to current and planned spacecraft applications including the Space Station

    Artificial intelligence and space power systems automation

    Get PDF
    Various applications of artificial intelligence to space electrical power systems are discussed. An overview is given of completed, on-going, and planned knowledge-based system activities. These applications include the Nickel-Cadmium Battery Expert System (NICBES) (the expert system interfaced with the Hubble Space Telescope electrical power system test bed); the early work with the Space Station Experiment Scheduler (SSES); the three expert systems under development in the space station advanced development effort in the core module power management and distribution system test bed; planned cooperation of expert systems in the Core Module Power Management and Distribution (CM/PMAD) system breadboard with expert systems for the space station at other research centers; and the intelligent data reduction expert system under development

    Kinetics of High Pressure Argon-helium Pulsed Gas Discharge

    Get PDF
    Simulations of a pulsed direct current discharge are performed for a 7% argon in helium mixture at a pressure of 270 Torr using both zero- and one-dimensional models. Kinetics of species relevant to the operation of an optically pumped rare-gas laser are analyzed throughout the pulse duration to identify key reaction pathways. Time dependent densities, electron temperatures, current densities, and reduced electric fields in the positive column are analyzed over a single 20 μs pulse, showing temporal agreement between the two models. Through the use of a robust reaction rate package, radiation trapping is determined to play a key role in reducing Ar(1s5) metastable loss rates through the reaction sequence Ar(1s5)+e− → Ar(1s4)+e− followed by Ar(1s4) → Ar + ℏω⁠. Collisions with He are observed to be responsible for Ar(2p9) mixing, with nearly equal rates to Ar(2p10) and Ar(2p8) ⁠. Additionally, dissociative recombination of Ar2+ is determined to be the dominant electron loss mechanism for the simulated discharge conditions and cavity size

    Effect of Ar(3p\u3csup\u3e5\u3c/sup\u3e4p; 2p)+M -\u3e Ar(3p\u3csup\u3e5\u3c/sup\u3e4s; 1s)+M branching ratio on optically pumped rare gas laser performance

    Get PDF
    Optically pumped rare gas laser performance is analyzed as a function of the Ar(3p54p; 2p) + M → Ar(3p54s; 1s) + M branching ratios. Due to the uncertainty in the branching ratios, a sensitivity study is performed to determine the effect on output and absorbed pump laser intensities. The analysis is performed using a radio frequency dielectric barrier discharge as the source of metastable production for a variety of Argon in Helium mixtures over pressures ranging from 200 to 500 Torr. Peak output laser intensities show a factor of 7 increase as the branching ratio is increased from 0.25 to 1.00. The collection of Ar* in Ar(1s4) is inversely proportional to the branching ratio and decreases output laser intensity by reducing the density of species directly involved with lasing

    Circles in the Sky: Finding Topology with the Microwave Background Radiation

    Get PDF
    If the universe is finite and smaller than the distance to the surface of last scatter, then the signature of the topology of the universe is writ large on the microwave background sky. We show that the microwave background will be identified at the intersections of the surface of last scattering as seen by different ``copies'' of the observer. Since the surface of last scattering is a two-sphere, these intersections will be circles, regardless of the background geometry or topology. We therefore propose a statistic that is sensitive to all small, locally homogeneous topologies. Here, small means that the distance to the surface of last scatter is smaller than the ``topology scale'' of the universe.Comment: 14 pages, 10 figures, IOP format. This paper is a direct descendant of gr-qc/9602039. To appear in a special proceedings issue of Class. Quant. Grav. covering the Cleveland Topology & Cosmology Worksho

    Space Station Freedom automation and robotics: An assessment of the potential for increased productivity

    Get PDF
    This report presents the results of a study performed in support of the Space Station Freedom Advanced Development Program, under the sponsorship of the Space Station Engineering (Code MT), Office of Space Flight. The study consisted of the collection, compilation, and analysis of lessons learned, crew time requirements, and other factors influencing the application of advanced automation and robotics, with emphasis on potential improvements in productivity. The lessons learned data collected were based primarily on Skylab, Spacelab, and other Space Shuttle experiences, consisting principally of interviews with current and former crew members and other NASA personnel with relevant experience. The objectives of this report are to present a summary of this data and its analysis, and to present conclusions regarding promising areas for the application of advanced automation and robotics technology to the Space Station Freedom and the potential benefits in terms of increased productivity. In this study, primary emphasis was placed on advanced automation technology because of its fairly extensive utilization within private industry including the aerospace sector. In contrast, other than the Remote Manipulator System (RMS), there has been relatively limited experience with advanced robotics technology applicable to the Space Station. This report should be used as a guide and is not intended to be used as a substitute for official Astronaut Office crew positions on specific issues

    Metastable Ar(1s\u3csub\u3e5\u3c/sub\u3e) Density Dependence on Pressure and Argon-helium Mixture in a High Pressure Radio Frequency Dielectric Barrier Discharge

    Get PDF
    Simulations of an α-mode radio frequency dielectric barrier discharge are performed for varying mixtures of argon and helium at pressures ranging from 200 to 500 Torr using both zero and one-dimensional models. Metastable densities are analyzed as a function of argon-helium mixture and pressure to determine the optimal conditions, maximizing metastable density for use in an optically pumped rare gas laser. Argon fractions corresponding to the peak metastable densities are found to be pressure dependent, shifting from approximately 15% Ar in He at 200 Torr to 10% at 500 Torr. A decrease in metastable density is observed as pressure is increased due to a diminution in the reduced electric field and a quadratic increase in metastable loss rates through Ar*2 formation. A zero-dimensional effective direct current model of the dielectric barrier discharge is implemented, showing agreement with the trends predicted by the one-dimensional fluid model in the bulk plasma

    Searching for hidden mirror symmetries in CMB fluctuations from WMAP 7 year maps

    Full text link
    We search for hidden mirror symmetries at large angular scales in the WMAP 7 year Internal Linear Combination map of CMB temperature anisotropies using global pixel based estimators introduced for this aim. Two different axes are found for which the CMB intensity pattern is anomalously symmetric (or anti-symmetric) under reflection with respect to orthogonal planes at the 99.84(99.96)% CL (confidence level), if compared to a result for an arbitrary axis in simulations without the symmetry. We have verified that our results are robust to the introduction of the galactic mask. The direction of such axes is close to the CMB kinematic dipole and nearly orthogonal to the ecliptic plane, respectively. If instead the real data are compared to those in simulations taken with respect to planes for which the maximal mirror symmetry is generated by chance, the confidence level decreases to 92.39 (76.65)%. But when the effect in question translates into the anomalous alignment between normals to planes of maximal mirror (anti)-symmetry and these natural axes mentioned. We also introduce the representation of the above estimators in the harmonic domain, confirming the results obtained in the pixel one. The symmetry anomaly is shown to be almost entirely due to low multipoles, so it may have a cosmological and even primordial origin. Contrary, the anti-symmetry one is mainly due to intermediate multipoles that probably suggests its non-fundamental nature. We have demonstrated that these anomalies are not connected to the known issue of the low variance in WMAP observations and we have checked that axially symmetric parts of these anomalies are small, so that the axes are not the symmetry ones.Comment: 18 pages, 10 figures, 2 tables. Consideration and discussion expanded, 5 figures and 1 table added, main conclusions unchange
    corecore